328 research outputs found

    Spatial correlations in attribute communities

    Get PDF
    Community detection is an important tool for exploring and classifying the properties of large complex networks and should be of great help for spatial networks. Indeed, in addition to their location, nodes in spatial networks can have attributes such as the language for individuals, or any other socio-economical feature that we would like to identify in communities. We discuss in this paper a crucial aspect which was not considered in previous studies which is the possible existence of correlations between space and attributes. Introducing a simple toy model in which both space and node attributes are considered, we discuss the effect of space-attribute correlations on the results of various community detection methods proposed for spatial networks in this paper and in previous studies. When space is irrelevant, our model is equivalent to the stochastic block model which has been shown to display a detectability-non detectability transition. In the regime where space dominates the link formation process, most methods can fail to recover the communities, an effect which is particularly marked when space-attributes correlations are strong. In this latter case, community detection methods which remove the spatial component of the network can miss a large part of the community structure and can lead to incorrect results.Comment: 10 pages and 7 figure

    Extreme Ultraviolet Beam Enhancement by Relativistic Surface Plasmons

    Get PDF
    The emission of high-order harmonics in the extreme ultraviolet range from the interaction of a short, intense laser pulse with a grating target is investigated experimentally. When resonantly exciting a surface plasmon, both the intensity and the highest order observed for the harmonic emission along the grating surface increase with respect to a flat target. Harmonics are obtained when a suitable density gradient is preformed at the target surface, demonstrating the possibility to manipulate the grating profile on a nanometric scale without preventing the surface plasmon excitation. In support of this, the harmonic emission is spatiotemporally correlated to the acceleration of multi-MeV electron bunches along the grating surface. Particle-in-cell simulations reproduce the experimental results and give insight on the mechanism of high harmonic generation in the presence of surface plasmons

    Integrating pediatric TB services into child healthcare services in Africa: study protocol for the INPUT cluster-randomized stepped wedge trial

    Get PDF
    Background Tuberculosis is among the top-10 causes of mortality in children with more than 1 million children suffering from TB disease annually worldwide. The main challenge in young children is the difficulty in establishing an accurate diagnosis of active TB. The INPUT study is a stepped-wedge cluster-randomized intervention study aiming to assess the effectiveness of integrating TB services into child healthcare services on TB diagnosis capacities in children under 5 years of age. Methods Two strategies will be compared: i) The standard of care, offering pediatric TB services based on national standard of care; ii) The intervention, with pediatric TB services integrated into child healthcare services: it consists of a package of training, supportive supervision, job aids, and logistical support to the integration of TB screening and diagnosis activities into pediatric services. The design is a cluster-randomized stepped-wedge of 12 study clusters in Cameroon and Kenya. The sites start enrolling participants under standard-of-care and will transition to the intervention at randomly assigned time points. We enroll children aged less than 5 years with a presumptive diagnosis of TB after obtaining caregiver written informed consent. The participants are followed through TB diagnosis and treatment, with clinical information prospectively abstracted from their medical records. The primary outcome is the proportion of TB cases diagnosed among children < 5 years old attending the child healthcare services. Secondary outcomes include: number of children screened for presumptive active TB; diagnosed; initiated on TB treatment; and completing treatment. We will also assess the cost-effectiveness of the intervention, its acceptability among health care providers and users, and fidelity of implementation. Discussion Study enrolments started in May 2019, enrolments will be completed in October 2020 and follow up will be completed by June 2021. The study findings will be disseminated to national, regional and international audiences and will inform innovative approaches to integration of TB screening, diagnosis, and treatment initiation into child health care services. Trial resistration NCT03862261, initial release 12 February 2019

    Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in <it>Oikopleura dioica </it>genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo).</p> <p>Results</p> <p><it>Oikopleura </it>genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways.</p> <p>Conclusions</p> <p><it>Oikopleura </it>has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.</p

    Down syndrome-recent progress and future prospects

    Get PDF
    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and is associated with a number of deleterious phenotypes, including learning disability, heart defects, early-onset Alzheimer's disease and childhood leukaemia. Individuals with DS are affected by these phenotypes to a variable extent; understanding the cause of this variation is a key challenge. Here, we review recent research progress in DS, both in patients and relevant animal models. In particular, we highlight exciting advances in therapy to improve cognitive function in people with DS and the significant developments in understanding the gene content of Hsa21. Moreover, we discuss future research directions in light of new technologies. In particular, the use of chromosome engineering to generate new trisomic mouse models and large-scale studies of genotype-phenotype relationships in patients are likely to significantly contribute to the future understanding of DS

    Postglacial species arrival and diversity buildup of northern ecosystems took millennia

    Get PDF
    What drives ecosystem buildup, diversity, and stability? We assess species arrival and ecosystem changes across 16 millennia by combining regional-scale plant sedimentary ancient DNA from Fennoscandia with near-complete DNA and trait databases. We show that postglacial arrival time varies within and between plant growth forms. Further, arrival times were mainly predicted by adaptation to temperature, disturbance, and light. Major break points in ecological trait diversity were seen between 13.9 and 10.8 calibrated thousand years before the present (cal ka BP), as well as break point in functional diversity at 12.0 cal ka BP, shifting from a state of ecosystem buildup to a state where most habitat types and biotic ecosystem components were in place. Trait and functional diversity stabilized around 8 cal ka BP, after which both remained stable, although changes in climate took place and species inflow continued. Our ecosystem reconstruction indicates a millennial-scale time phase of formation to reach stable and resilient levels of diversity and functioning.publishedVersio
    corecore